Applying Spectral Biclustering to Mortality Data
نویسندگان
چکیده
We apply spectral biclustering to mortality datasets in order to capture three relevant aspects: the period, the age and the cohort effects, as their knowledge is a key factor in understanding actuarial liabilities of private life insurance companies, pension funds as well as national pension systems. While standard techniques generally fail to capture the cohort effect, on the contrary, biclustering methods seem particularly suitable for this aim. We run an exploratory analysis on the mortality data of Italy, with ages representing genes, and years as conditions: by comparison between conventional hierarchical clustering and spectral biclustering, we observe that the latter offers more meaningful results.
منابع مشابه
cHawk: An Efficient Biclustering Algorithm based on Bipartite Graph Crossing Minimization
Biclustering is a very useful data mining technique for gene expression analysis and profiling. It helps identify patterns where different genes are co-related based on a subset of conditions. Bipartite Spectral partitioning is a powerful technique to achieve biclustering but its computation complexity is prohibitive for applications dealing with large input data. We provide a connection betwee...
متن کاملAnalysis of Click Stream Patterns using Soft Biclustering Approaches
As websites increase in complexity, locating needed information becomes a difficult task. Such difficulty is often related to the websites’ design but also ineffective and inefficient navigation processes. Research in web mining addresses this problem by applying techniques from data mining and machine learning to web data and documents. In this study, the authors examine web usage mining, appl...
متن کاملSpectral biclustering of microarray cancer data: co-clustering genes and conditions
Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to simultaneously find "marker genes" that are differentially expressed in particular “conditions”. We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of ...
متن کاملTensor Biclustering
Consider a dataset where data is collected on multiple features of multiple individuals over multiple times. This type of data can be represented as a three dimensional individual/feature/time tensor and has become increasingly prominent in various areas of science. The tensor biclustering problem computes a subset of individuals and a subset of features whose signal trajectories over time lie ...
متن کاملA Workflow for the Application of Biclustering to Mass Spectrometry Data
Biclustering techniques have been successfully applied to analyze microarray data and they begin to be applied to the analysis of mass spectrometry data, a high-throughput technology for proteomic data analysis which has been an active research area during the last years. In this work, we propose a novel workflow to the application of biclustering to MALDI-TOF mass spectrometry data, supported ...
متن کامل